Wednesday, December 20, 2017

VALIDATION OF AUTOMATED PROCESS EQUIPMENT AND QUALITY SYSTEM SOFTWARE

The Quality System regulation requires that "when computers or automated data processing systems are used as part of production or the quality system, the [device] manufacturer shall validate computer software for its intended use according to an established protocol." (See 21 CFR §820.70(i)). This has been a regulatory requirement of FDA's medical device Good Manufacturing Practice (GMP) regulations since 1978.
In addition to the above validation requirement, computer systems that implement part of a device manufacturer's production processes or quality system (or that are used to create and maintain records required by any other FDA regulation) are subject to the Electronic Records; Electronic Signatures regulation. (See 21 CFR Part 11.) This regulation establishes additional security, data integrity, and validation requirements when records are created or maintained electronically. These additional Part 11 requirements should be carefully considered and included in system requirements and software requirements for any automated record `keeping systems. System validation and software validation should demonstrate that all Part 11 requirements have been met.
Computers and automated equipment are used extensively throughout all aspects of medical device design, laboratory testing and analysis, product inspection and acceptance, production and process control, environmental controls, packaging, labeling, traceability, document control, complaint management, and many other aspects of the quality system. Increasingly, automated plant floor operations can involve extensive use of embedded systems in:
Software tools are frequently used to design, build, and test the software that goes into an automated medical device. Many other commercial software applications, such as word processors, spreadsheets, databases, and flowcharting software are used to implement the quality system. All of these applications are subject to the requirement for software validation, but the validation approach used for each application can vary widely.
Whether production or quality system software is developed in-house by the device manufacturer, developed by a contractor, or purchased off-the-shelf, it should be developed using the basic principles outlined elsewhere in this guidance. The device manufacturer has latitude and flexibility in defining how validation of that software will be accomplished, but validation should be a key consideration in deciding how and by whom the software will be developed or from whom it will be purchased. The software developer defines a life cycle model. Validation is typically supported by:
  • verifications of the outputs from each stage of that software development life cycle; and
  • checking for proper operation of the finished software in the device manufacturer's intended use environment.
6.1. HOW MUCH VALIDATION EVIDENCE IS NEEDED?
The level of validation effort should be commensurate with the risk posed by the automated operation. In addition to risk other factors, such as the complexity of the process software and the degree to which the device manufacturer is dependent upon that automated process to produce a safe and effective device, determine the nature and extent of testing needed as part of the validation effort. Documented requirements and risk analysis of the automated process help to define the scope of the evidence needed to show that the software is validated for its intended use. For example, an automated milling machine may require very little testing if the device manufacturer can show that the output of the operation is subsequently fully verified against the specification before release. On the other hand, extensive testing may be needed for:
  • a plant-wide electronic record and electronic signature system;
  • an automated controller for a sterilization cycle; or
  • automated test equipment used for inspection and acceptance of finished circuit boards in a life-sustaining / life-supporting device.
Numerous commercial software applications may be used as part of the quality system (e.g., a spreadsheet or statistical package used for quality system calculations, a graphics package used for trend analysis, or a commercial database used for recording device history records or for complaint management). The extent of validation evidence needed for such software depends on the device manufacturer's documented intended use of that software. For example, a device manufacturer who chooses not to use all the vendor-supplied capabilities of the software only needs to validate those functions that will be used and for which the device manufacturer is dependent upon the software results as part of production or the quality system. However, high risk applications should not be running in the same operating environment with non-validated software functions, even if those software functions are not used. Risk mitigation techniques such as memory partitioning or other approaches to resource protection may need to be considered when high risk applications and lower risk applications are to be used in the same operating environment. When software is upgraded or any changes are made to the software, the device manufacturer should consider how those changes may impact the "used portions" of the software and must reconfirm the validation of those portions of the software that are used. (See 21 CFR §820.70(i).)
6.2. DEFINED USER REQUIREMENTS
A very important key to software validation is a documented user requirements specification that defines:
  • the "intended use" of the software or automated equipment; and
  • the extent to which the device manufacturer is dependent upon that software or equipment for production of a quality medical device.
The device manufacturer (user) needs to define the expected operating environment including any required hardware and software configurations, software versions, utilities, etc. The user also needs to:
  • document requirements for system performance, quality, error handling, startup, shutdown, security, etc.;
  • identify any safety related functions or features, such as sensors, alarms, interlocks, logical processing steps, or command sequences; and
  • define objective criteria for determining acceptable performance.
The validation must be conducted in accordance with a documented protocol, and the validation results must also be documented. (See 21 CFR §820.70(i).) Test cases should be documented that will exercise the system to challenge its performance against the pre-determined criteria, especially for its most critical parameters. Test cases should address error and alarm conditions, startup, shutdown, all applicable user functions and operator controls, potential operator errors, maximum and minimum ranges of allowed values, and stress conditions applicable to the intended use of the equipment. The test cases should be executed and the results should be recorded and evaluated to determine whether the results support a conclusion that the software is validated for its intended use.
A device manufacturer may conduct a validation using their own personnel or may depend on a third party such as the equipment/software vendor or a consultant. In any case, the device manufacturer retains the ultimate responsibility for ensuring that the production and quality system software:
  • is validated according to a written procedure for the particular intended use; and
  • will perform as intended in the chosen application.
The device manufacturer should have documentation including:
  • defined user requirements;
  • validation protocol used;
  • acceptance criteria;
  • test cases and results; and
  • a validation summary
that objectively confirms that the software is validated for its intended use.
6.3. VALIDATION OF OFF-THE-SHELF SOFTWARE AND AUTOMATED EQUIPMENT
Most of the automated equipment and systems used by device manufacturers are supplied by third-party vendors and are purchased off-the-shelf (OTS). The device manufacturer is responsible for ensuring that the product development methodologies used by the OTS software developer are appropriate and sufficient for the device manufacturer's intended use of that OTS software. For OTS software and equipment, the device manufacturer may or may not have access to the vendor's software validation documentation. If the vendor can provide information about their system requirements, software requirements, validation process, and the results of their validation, the medical device manufacturer can use that information as a beginning point for their required validation documentation. The vendor's life cycle documentation, such as testing protocols and results, source code, design specification, and requirements specification, can be useful in establishing that the software has been validated. However, such documentation is frequently not available from commercial equipment vendors, or the vendor may refuse to share their proprietary information.
Where possible and depending upon the device risk involved, the device manufacturer should consider auditing the vendor's design and development methodologies used in the construction of the OTS software and should assess the development and validation documentation generated for the OTS software. Such audits can be conducted by the device manufacturer or by a qualified third party. The audit should demonstrate that the vendor's procedures for and results of the verification and validation activities performed the OTS software are appropriate and sufficient for the safety and effectiveness requirements of the medical device to be produced using that software.
Some vendors who are not accustomed to operating in a regulated environment may not have a documented life cycle process that can support the device manufacturer's validation requirement. Other vendors may not permit an audit. Where necessary validation information is not available from the vendor, the device manufacturer will need to perform sufficient system level "black box" testing to establish that the software meets their "user needs and intended uses." For many applications black box testing alone is not sufficient. Depending upon the risk of the device produced, the role of the OTS software in the process, the ability to audit the vendor, and the sufficiency of vendor-supplied information, the use of OTS software or equipment may or may not be appropriate, especially if there are suitable alternatives available. The device manufacturer should also consider the implications (if any) for continued maintenance and support of the OTS software should the vendor terminate their support.
For some off-the-shelf software development tools, such as software compilers, linkers, editors, and operating systems, exhaustive black-box testing by the device manufacturer may be impractical. Without such testing - a key element of the validation effort - it may not be possible to validate these software tools. However, their proper operation may be satisfactorily inferred by other means. For example, compilers are frequently certified by independent third-party testing, and commercial software products may have "bug lists", system requirements and other operational information available from the vendor that can be compared to the device manufacturer's intended use to help focus the "black-box" testing effort. Off-the-shelf operating systems need not be validated as a separate program. However, system-level validation testing of the application software should address all the operating system services used, including maximum loading conditions, file operations, handling of system error conditions, and memory constraints that may be applicable to the intended use of the application program.

No comments:

Pharmaceutical Validation Documentation Requirements

Pharmaceutical validation is a critical process that ensures that pharmaceutical products meet the desired quality standards and are safe fo...