Remember that you are required to produce documented evidence that the computer system has been installed as specified and that the functionality provided by the system meets the stated requirements. Your validation staff must feel comfortable that this documented evidence will be produced and that it will withstand an inspection from one or more of the pharmaceutical regulators. Whether validation activities are performed by your control and instrument engineers, as occurs in at least one major pharmaceutical production plant, or entirely by a validation department, it is necessary to obtain buy-in from those who are responsible for validation.
They must also be involved in the entire process, if only as an approval signatory, so that they can be assured that the results will meet the intended aim. It is also necessary to consider the effects on the individual. After all, this proposal removes work from the validation department, a proposition that may require some 'selling' on the grounds of overall company benefits.
It may not only be the validation department staff who need to be convinced that a different approach can meet corporate goals as well as saving time and money. In 2000, I attended the International Society for Pharmaceutical Engineering (ISPE) Annual Meeting in San Diego (CA, USA). One of the sessions, presented jointly by a US operating company and one of its suppliers promoted the use of factory acceptance tests (FATs) as part of the supply of packaged systems.1
It seemed strange to me that there should be any form of debate about whether or not FATs should be performed. Over a period of 25 years as a supplier of control systems within the European market, FATs had always been an obligatory part of any contract. Additionally, the presentation made no reference to any form of validation activity. When I questioned this, the operating company presenter said that they would "never involve a supplier in validation". It was clear that the supply of a packaged system was seen as a completely separate activity to the validation of that system; perhaps because purchasing and validation had always been two separate areas of responsibility. To add value to the supplier's scope it is, therefore,, necessary to also involve your purchasing department.
When you consider what is tested as part of an FAT you soon realize that some of the tests that would be performed for IQ and most of the tests that form part of OQ will have already been completed and witnessed.
For example, the installation of equipment within cabinets and the installation of software packages within the control system will all be verified as meeting the project specification. Similarly, functionality associated with instrument and actuator interfaces, operator interfaces, equipment control and recipe actions will also be tested against specifications.
If we can ensure that these test records can be used as part of the documented evidence then these tests or their equivalent will not need to be performed on site, thereby saving significant time and money.
Those parts of the system that cannot be tested in the factory will be tested during site acceptance tests (SATs), which provide another opportunity to collect documented evidence. Similarly, where evidence of the functionality of a complete instrument loop is required, the information can be documented during commissioning activities.
Involving the supplier
Any supplier who has an accredited quality control system will have the basic controls in place during project execution. However, the scope of supply needs to be explicitly extended to include some basic training of supplier project staff and the production of suitable records. The training to be given to supplier staff must cover an overview of validation, including the objectives of IQ, OQ and PQ, and how to generate specifications and records.
Using the GAMP Guide as the basis of the training is a good idea because it describes the relationship between the user requirements specification (URS), functional and design specifications (FDS), system test specification (STS) and the need to trace requirements from URS, through the FDS to the STS.2 The arrows in Figure 2 illustrate the links that need to be recorded in the requirements trace matrix (RTM). It is beneficial for the supplier to generate the RTM, as many of the URS requirements will be covered by statements in the supplier's standard product specifications and manuals, and the supplier is in the best position to identify where these statements can be found.
validation refers to establishing documented evidence that a process or system, when operated within established parameters, can perform effectively and reproducibly to produce a medicinal product meeting its pre-determined specifications and quality attributes
Subscribe to:
Post Comments (Atom)
Pharmaceutical Validation Documentation Requirements
Pharmaceutical validation is a critical process that ensures that pharmaceutical products meet the desired quality standards and are safe fo...
-
K. Dashora, D. Singh, Swarnlata Saraf and S. Saraf *. Institute of Pharmacy, Pt.RavishankarShuklaUniversity, Raipur 492 010. *Author for ...
-
Validation of the Autoclave is classified into the following 1.0 OQ – Operational Qualification 2.0 PQ – Performance Qualification The valid...
-
Cold storage is a relatively simple cold room that is commonly used to store material between 2[degrees] to 8[degrees]C. Such cold rooms a...
No comments:
Post a Comment