Definitions | The moisture content of a product can be defined as the percentage weight of water in relation to the dry weight of the product. Products in which moisture can be present can be classified in two categories: hygroscopic and non hygroscopic. Examples of hygroscopic materials are salts, vegetal fibers, most metal oxides, many polymers, etc. Examples of non hygroscopic products are metal powders, glass granules, etc. Regarding the moisture content of a product, we define static equilibrium as a set of conditions under which the product does not exchange any moisture with its environment. Under conditions of static equilibrium, the moisture content of a hygroscopic product depends on the nature of the product and also on the two following factors: (a) the partial pressure of water vapor in the immediate environment of the product (b) the temperature of the product If the moisture content of a product is not dependent on both these factors, then the product is not hygroscopic. Hygroscopic products may absorb water in different ways: sorption with formation of a hydrate, binding by surface energy, diffusion of water molecules in the material structure, capillary condensation, formation of a solution, etc. Depending on the absorption process, water is bound to the product with more or less strength. Moisture content can include both an immobilized part (e.g. water of hydration) and an active part. Water activity Aw (or equilibrium relative humidity %ERH) measures the vapor pressure generated by the moisture present in a hygroscopic product. aw = p / ps and %ERH = 100 x Aw, where: p : partial pressure of water vapor at the surface of the product |
Aw and Temperature | Both water activity (materials) and relative humidity (gases) are referred to the saturation pressure (ps) or partial pressure of water vapor above pure water: aw = p / ps The saturation pressure (ps) is strongly dependent on temperature. At normal room temperature, ps increases by about 6.2% for a 1°C increase in temperature. In an open environment that is not saturated with water vapor, the partial pressure of water vapor (p) does not change with temperature. In a closed environment, (p) changes proportionally to the °K temperature (°K temperature = °C temperature + 273.16). At normal room temperature, the change in (p) caused by a small change in temperature is practically negligible. Because (p) does not change with temperature while (ps) does, the relative humidity of a gas (%RH = 100 x p/ps) is strongly temperature dependent. At 95 %RH and room temperature, an increase of 1°C results in a relative humidity decrease of about 6 %RH. At 50%RH, the same temperature increase causes relative humidity to decrease by about 3 %RH. |
Applications | The active part of moisture content and, therefore, water activity, provide better information than the total moisture content regarding the micro-biological, chemical and enzymatic stability of perishable products such as foods and seeds. For similar reasons, water activity is equally relevant in the pharmaceutical industry where it provides useful information regarding the cohesion of tablets and pills, or the adherence of coatings. Water activity can be directly compared with the relative humidity of the ambient air to prevent dimensional changes in a product (paper, photographic film), to prevent hygroscopic powders (powdered sugar, salt) from caking or turning into a solid block, etc Water activity can be used with some products (mostly synthetic products) as a means of indirectly measuring the total moisture content. This requires developing sorption isotherms to this purpose. Sorption isotherms are graphs that provide the relationship between water activity and moisture content at constant temperature. For most natural products, repeatable sorption isotherms cannot be reliably developed and water activity should be regarded as separate from moisture content. |
validation refers to establishing documented evidence that a process or system, when operated within established parameters, can perform effectively and reproducibly to produce a medicinal product meeting its pre-determined specifications and quality attributes
Saturday, June 16, 2007
Water Activity: Definition & Applications
Subscribe to:
Post Comments (Atom)
Pharmaceutical Validation Documentation Requirements
Pharmaceutical validation is a critical process that ensures that pharmaceutical products meet the desired quality standards and are safe fo...
-
K. Dashora, D. Singh, Swarnlata Saraf and S. Saraf *. Institute of Pharmacy, Pt.RavishankarShuklaUniversity, Raipur 492 010. *Author for ...
-
Validation of the Autoclave is classified into the following 1.0 OQ – Operational Qualification 2.0 PQ – Performance Qualification The valid...
-
Cold storage is a relatively simple cold room that is commonly used to store material between 2[degrees] to 8[degrees]C. Such cold rooms a...
1 comment:
Can you please guide on method validation requirements for water activity test.Is method validation required (intended product is tablet for US market and water activity is a release test).Instrument is calibrated as per SOP frequency and manufacturer instruction.Which validation parameters and criteria apply to this test
Post a Comment